Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 157(21): 214303, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36511526

RESUMO

In this work, the pressure- and temperature-dependent reaction rate constants for the hydrogen abstraction and addition of hydroxyl radicals to the unsaturated cyclopentene were studied. Geometries and vibrational frequencies of reactants, products, and transition states were calculated using density functional theory, with single-point energy corrections determined at the domain-based local pair natural orbital-coupled-cluster single double triple/cc-pVTZ-F12 level. The high-pressure limit rate constants were calculated using the canonical variational transition state theory with the small-curvature tunneling approximation. The vibrational partition functions were corrected by the effects of torsional and ring-puckering anharmonicities of the transition states and cyclopentene, respectively. Variational effects are shown to be relevant for all the hydrogen abstraction reactions. The increasing of the rate constants by tunneling is significant at temperatures below 500 K. The pressure dependence on the rate constants of the addition of OH• to cyclopentene was calculated using the system-specific quantum Rice-Ramsperger-Kassel model. The high-pressure limit rate constants decrease with increasing temperature in the range 250-1000 K. The falloff behavior was studied at several temperatures with pressures varying between 10-3 and 103 bar. At temperatures below 500 K, the effect of the pressure on the addition rate constant is very modest. However, at temperatures around and above 1000 K, taking pressure into account is mandatory for an accurate rate constant calculation. Branching ratio analyses reveal that the addition reaction dominates at temperatures below 500 K, decreasing rapidly at higher temperatures. Arrhenius parameters are provided for all reactions and pressure dependent Arrhenius parameters are given for the addition of OH• to cyclopentene.

2.
J Mol Model ; 26(11): 296, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-33026509

RESUMO

Alkanes are a fundamental part in empirical force fields (FF) not only due to their technological relevance, but also due to the prevalence of alkane moieties in organic molecules, e.g., compounds containing a saturated carbon chain. Therefore, a good description of alkane interactions is crucial for determining the quality of a FF. In this study, the performance of 12 empirical force fields (FF) was evaluated in the context of reproducing liquid properties of alkanes. More specifically, n-octane was chosen as a reference compound since it is a liquid in a broad temperature range and it has numerous experimental data for thermodynamic, transport, and structural properties, as well as for their temperature dependencies. A normalized root-mean-square deviation (NRMSD) analysis was used to rank the force fields in their ability to reproduce the experimental data. Five out of the six best force fields considered were united-atom models. The GROMOS force field showed the smallest deviation in terms of NRMSD, followed by TRAPPE-EH, NERD, CHARMM-UA, TRAPPE-UA, and OPLS-UA. This overall better performance of the united-atom force fields indicates that complexity does not always bring quality.

3.
J Phys Chem A ; 122(2): 610-630, 2018 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-29257685

RESUMO

N-Heptane and 2,2,4-trimethylpentane (isooctane) are the key species in the modeling of ignition of hydrocarbon-based fuel formulations. Isooctane is knock-resistant whereas n-heptane is a very knock-prone hydrocarbon. It has been suggested that interconversion of their associated alkylperoxy and hydroperoxyalkyl species via hydrogen-transfer isomerization reaction is the key step to understand their different knocking behavior. In this work, the kinetics of unimolecular hydrogen-transfer reactions of n-heptylperoxy and isooctylperoxy are determined using canonical variational transition-state theory and multidimensional small curvature tunneling. Internal rotation of involved molecules is taken explicitly into account in the molecular partition function. The rate coefficients are calculated in the temperature range 300-900 K, relevant to low-temperature autoignition. The concerted HO2 elimination is an important reaction that competes with some H-transfer and is associated with chain termination. Thus, the branching ratio between these reaction channels is analyzed. We show that variational and multidimensional tunneling effects cannot be neglected for the H-transfer reaction. In particular, the pre-exponential Arrhenius fitting parameter derived from our rate constants shows a strong dependence on the temperature, because tunneling increases quickly at temperatures below 500 K. On the basis of our results, the existing qualitative model for the reasons for different knock behavior observed for n-heptane and isooctane is quantitatively validated at the molecular level.

5.
J Phys Chem A ; 110(43): 11903-5, 2006 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-17064177

RESUMO

Protonated methane, CH(5)(+), is a key reactive intermediate in hydrocarbon chemistry and a borderline case for chemical structure theory, being the simplest example of hypercoordinated carbon. Early quantum mechanical calculations predicted that the properties of this species could not be associated with only one structure, because it presents serious limitations of the Born-Oppenheimer approximation. However, ab initio molecular dynamics and diffusion Monte Carlo calculations showed that the most populated structure could be pictured as a CH(3) tripod linked to a H(2) moiety. Despite this controversy, a model for the chemical bonds involved in this ion still lacks. Here we present a modern valence bond model for the electronic structure of CH(5)(+). The chemical bond scheme derived directly from our calculations pictures this ion as H(3)C...H(2)(+). The fluxionality can be seen as the result of a proton transfer between C-H bonds. A new insight on the vibrational bands at approximately 2400 and approximately 2700 cm(-1) is suggested. Our results show that the chemical bond model can be profitably applied to such intriguing systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...